Telescope Peering Into the Depths of TLS Traffic in Real-Time

Caragea Radu

May 26, 2016

About me

PwnThyBytes: CTF team captain

This presentation

Is not about:

- Faults in the TLS protocol/implementation
- Attacks on the crypto level of TLS

This presentation

Is not about:

- Faults in the TLS protocol/implementation
- Attacks on the crypto level of TLS

Is about:

- An experiment into what can be done from the hypervisor (powerful adversary; consider cloud providers)
- How far you can go and how noticeable it would be to an end-user
- Some unexpected results

Project Genesis

Operating a honeypot farm

- weak root (!) credentials: do what you will
- analyze traffic (unless it's encrypted)
- Malvertising
 - Automated in-browser crawlers
 - Scour the net with the hope of getting infected
 - Need the infection vector (when served through TLS)

Variable	Value	9eba 🗟
SSLKEYLOGFILE	C:\kevs\kevs.txt	b6d902d887450a86
TEMP	%USERPROFILE%\AppData\Local\Temp	
ТМР	%USERPROFILE%\AppData\Local\Temp	1fec dab058836c50d077
		54fd %b1990822ea019b9
	New Edit Delete	46a4 91572d46bbfd9451
rstern variables		1ca0
rstem variables Variable	Value	1ca0 14b4f7babbe69abo
rstem variables Variable ComSpec	Value C:\Windows\aystem32\cmd.exe	1ca0 f4b4f7babbe69abc
rstem variables Variable ComSpec NUMBER_OF_PROCESSORS OS	Value ^ C:\Windows\system32\cmd.exe 1 Vindows_NT	1ca0 if4b4f7babbe69abc d8fe e0945fba02bcc675
vstem variables Variable ComSpec NUMBER_OF_PROCESSORS OS Path	Volue C:\Windows\system32\cmd.exe 1 Windows_NT C:\Windows\C:\Windows\System32\Wberry	1ca0 if4b4f7babbe69abc d8fe ie0945fba02bcc675 a994
stern variables Variable ComSpec NUMBER,OF_PROCESSORS OS Path PATHEXT PROCESSOR_ARCHITECTURE	Value C:\Windows/system32\cmd.exe I Windows_NT C:\Windows/System32\C\Windows;C:\Windows/System32\Wbem;COM_LKE;BAT;C:ND;VBS;VBE;JS_JSE;WSF;WSH;MSC AMDE4	1ca0 f4b4f7babbe69abc d8fe e0945fba02bcc675 a994 65e6d5bd00d17bfc
stem variables Variable ComSpec NUMBER_OF_PROCESSORS OS Path PATHEXT PROCESSOR JACCHITECTURE PROCESSOR JDENTIFIER	Volue C:\Windows\system32\cmd.exe 1 Windows_NT C:\Windows;C:\Windows;C:\Windows\System32\Wbern; COM;:EXE;:BAT;:CMD;.VBS;VBE;JS;JSE;WSF;WSH;.MSC AMD64 Intel64 Entwils 6 Model 60 Stepping 3. GenuineIntel Y	1ca0 f4b4f7babbe59abd d8fe e0945fba02bcc675 a994 l65e6d5bd00d17bfd bb4a8
stem variables Variable ComSpec NUMBER_OF_PROCESSORS OS Path PATHEXT PROCESSOR_ARCHITECTURE PROCESSOR_IDENTIFIER	Value C:\Windows/system32\emd.exe I Windows_NT C:\Windows/System32\C:\Windows/C:\Windows/System32\Wbern;COM_LRE;BAT_C:ND;.VBS;VBE;JS;JSE;WSF;WSH;MSC AMD64 Intel64 Family 6 Model 60 Steeping 3. GenuineIntel New Edit Delete	1ca0 1c40

nvironment Variables	\times			
🔳 keys.txt - Notepad		-		×
File Edit Format View Help				
CLIENT_RANDOM aa2888229b8c273d56937d60646c6808ab964766b6f33a2ae541029	772889¢	eba		
52729965930874b076af2c2239113b8bae4a112614fa546cb2951c540f595cda12fab c8b779	2a968b6	5d902d	887450a	980
CLIENT RANDOM 4f382499866192b172760db767103717d947029ac3fd56ae8118116	71ecb1	fec		
4300323bfc86e6b49129dbb18f20b73538d5872c4459b59c293e154a14bcbe7452a13 b961e8	4f07fda	ab0588	36c50d0	977
CLIENT_RANDOM 199656a610111c9f296c83a770ffb15a6afe81077a49849a85dc8d3	4a5d554	lfd		
c982afb4747f4d4f3f406cadc17ad98a289799c929b6b8d101813d48914ca54b7d595 28c99f	2f8908b	19908	22ea019	9b9
CLIENT_RANDOM 6174c281f03a2296b9bd269a4a1d8b81d1dad5f1952374807c99d05	c002b46	ba4		
5f675405332aafd8e29024f41a7400a2d6d17631b63364b6d345fa0affeab1e3aaa47	49eff9:	L572d4	5bbfd94	45 f
371cfe				
CLIENT_RANDOM ed6fdc9418282b369c56d0c7d34707bc0b36513198dd9336f441e65	2a21b10	:a0		
3918a4ba18e231ad2fe4233489e506f43ae43c2fca915810eaacd56df2e3c42803c58 b17f6e	44626f4	lb4f7b	abbe69a	abc
CLIENT_RANDOM baa53f19f022274d8f52857a8b8c6a5b3bb5f099955d506d24f15df	2f6a5d8	3fe		
0e16ae54794c243ea57926142590cdd4889f7b74be422dd94f6104d6cecd0f2f6f970 97c3a5	b2acbe	9945fb	a02bcc6	575
CLIENT_RANDOM ffbb0822ce528a9b34cb1ee13d8f3d2ff55a553a3db25c906e5c7f6	89f85a9	994		
6d8d746c3489d31ccc2b00ac029fad7629b22a4a4ad097039802590c13c3ba6a8c776 7cb514	6f31d65	e6d5b	d00d17b	ofd
CLIENT_RANDOM a9961a664319cdfc929a255c6e9cb6a8a532003fe7c534eaa7a5fb8	5f873b4	la8		
47773ea074f47ce3fbf4eef1143fd3b1b6bbe7e0f060a8f9d9bf8af97313dc846bb30 beb6fa	8eb57d:	L95 198	3409e54	441
CLIENT_RANDOM dbb703e5547baa31c9caf73ec1a668df45243abd96e6be6b5b17dc3	700ee74	197		
OK Cancel				

[SSL	segment	of	а	reassembled	PDU]
[TCP	segment	of	а	reassembled	PDU

E	0000	0.0	0.0	0.0		- 5	- 0	0	50	4.4		- 0	0.0	0.0	0.0	45	0.0	10 4 5
I		02	00	00	e4	as	aь	bС	50	40	ae	ay	00	98	00	45	00	E. ME.
I	0010	1c	7c	87	40	40	00	30	06	73	a9	8d	55	e3	76	05	с4	. .@@.0. s. U.v
I		bd	02	01	bb	9c	08	d9	d0	e4	65	bc	са	96	2e	80	10	e
I		00	47	50	01	00	00	01	01	08	0a	⊙d	eb	51	75	05	67	.GPQu.g
I	0040	74	сØ	17	03	01	01	40	2a	be	8f	70	1d	b7	44	05	3e	t@*pD.>
I		f6	2a	cf	ae	e9	43	a9	63	04	9c	18	се	83	52	0f	9f	* C. c R
I		6d	1a	84	b3	2a	df	ea	a1	c5	ac	cf	d0	35	36	11	83	m*
I		11	23	4c	e7	81	cd	сØ	10	08	5a	d2	d3	88	b0	67	11	.#LZa.
I		f0	9b	3e	ae	41	e1	f8	fe	3a	9f	97	f7	c1	5a	9d	55	>.A :Z.U
I		89	bd	ed	88	ae	75	96	f3	a0	4a	04	1e	de	9c	65	dd	uJe.
I		36	85	b5	82	9f	02	05	22	bd	62	сс	b2	99	7e	20	ff	6" .b~ .
I		97	08	01	f2	3c	45	Зb	b9	d7	58	b9	69	8c	49	ff	7d	<e:x.i.i.}< th=""></e:x.i.i.}<>
I		09	af	51	a4	f3	f9	01	47	cc	56	74	f8	63	ad	c6	11	0G .Vt.c
I		c2	7c	3f	9a	81	1e	71	d4	d6	94	0e	Зf	4d	4c	71	75	. [?a?MLau
I		d7	40	he	aa	96	ac	9d	8d	81	e6	e6	30	35	h7	fc	cf	a. 05
I	00f0	25	46	1f	dh	90	35	2f	73	af	64	73	12	e6	92	5e	do	%E 5/s s ^
I		76	04	6f	49	ha	e5	0h	f6	63	f3	58	a5	43	he	76	20	V OT X C V
I	0110	d4	52	-0	10	8/	20	22	f1	8f	13	78	81	20	28	-5	1f	R CY O
I	0120	96	hf	60	db	27	28	ch	77	26	50	26	56	hc	do	10	2h	' (w &P6V
I		-7	0-	63	1-	40	-20	7-	46	20	05	10		1-	00	27	25	
I	0130	e/	oa	60	те	10	63	70	45	82	85	12	CC	ae	82	27	20	m E +
P																		
	Frame (7306 bytes) Decrypted SSL data (296 bytes)																	

3	[SSL s	segm	ent	of	a	rea	sse	mbl	ed	PDU								
5	LICH 8	segm	ient	от	а	rea	sse	mpt	ea	PDU								
Γ	0000	48	54	54	50	2f	31	2e	31	20	32	30	30	20	4f	4b	0d	HTTP/1.1 200 OK.
Т	0010	0a	44	61	74	65	3a	20	46	72	69	2c	20	30	38	20	41	.Date: F ri, 08 A
L		70	72	20	32	30	31	36	20	31	33	3a	33	35	3a	32	39	pr 2016 13:35:29
Т		20	47	4d	54	0d	0a	53	65	72	76	65	72	3a	20	41	70	GMTSe rver: Ap
Т	0040	61	63	68	65	2f	32	2e	32	2e	31	36	0d	0a	4c	61	73	ache/2.2 .16Las
Т		74	2d	4d	6f	64	69	66	69	65	64	Зa	20	54	68	75	2c	t-Modifi ed: Thu,
L		20	33	30	20	41	70	72	20	32	30	31	35	20	31	30	3a	30 Apr 2015 10:
L		30	35	3a	32	34	20	47	4d	54	Θd	0a	45	54	61	67	3a	05:24 GM T. ETag:
Т		20	22	31	33	32	38	30	30	33	2d	39	32	65	39	61	2d	"132800 3-92e9a-
Т		35	31	34	65	65	33	62	66	31	36	31	30	30	22	0d	0a	514ee3bf 16100"
Т	00a0	41	63	63	65	70	74	2d	52	61	6e	67	65	73	3a	20	62	Accept-R anges: b
Т		79	74	65	73	0d	0a	43	6f	6e	74	65	6e	74	2d	4c	65	ytesCo ntent-Le
L		6e	67	74	68	3a	20	36	30	31	37	35	34	0d	0a	4b	65	ngth: 60 1754Ke
Т		65	70	2d	41	6c	69	76	65	3a	20	74	69	6d	65	6f	75	ep-Alive : timeou
Т	00e0	74	3d	31	35	2c	20	6d	61	78	Зd	31	30	30	0d	0a	43	t=15, ma x=100C
Т	00f0	6f	6e	6e	65	63	74	69	6f	6e	3a	20	4b	65	65	70	2d	onnectio n: Keep-
L	0100	41	6c	69	76	65	Θd	0a	43	6f	6e	74	65	6e	74	2d	54	AliveC ontent-T
Т	0110	79	70	65	3a	20	61	70	70	6c	69	63	61	74	69	6f	6e	ype: app lication
Т	0120	2f	70	64	66	0d	0a	0d	0a									/pdf
L																		
	Frame	e (73	06 b	yte	s)	De	ecry	ptec	ISS	L data	a (2	96 b	yte	5)				

- Implemented in libNSS (firefox) and openSSL (chrome) but not IE/Edge
- The downside: it's blatantly visible

Other solutions: Custom Root CA

Other solutions: Custom Root CA

Other solutions: Custom Root CA

- Typical solution used by AVs/proxies to intercept TLS traffic
- Visible by malware by scanning the disk.
- Moreover, in "Analyzing Forged SSL Certificates in the Wild" Huang et al show how to do this within the browser

Other solutions: PANDA keyfind plugin

534 lines (461 sloc) 33.6 KB

Raw Blame History 🖋 📒

Finding SSL/TLS Master Secrets with PANDA

Introduction

Monitoring SSL/TLS-encrypted traffic is a classic problem for intrusion detection systems. Currently, hypervisor- or networkbased IDSes that wish to analyze encrypted traffic must perform a man-in-the-middle attack on the connection, presenting a false server certificate to the client. Not only does this require the client to cooperate by trusting certificates signed by the intrusion detection system, it also takes control of the certificate verification process out of the hands of the client—a dangerous step, given that many existing SSL/TLS interception proxies have a history of certificate trust vulnerabilities.

Instead of a man-in-the-middle attack, we can instead attempt to locate the code that generates SSL/TLS master secret; this secret is sufficient to decrypt any encrypted traffic in a given session, giving us a "man-on-the-inside". Once we have identified the location of the code that generates this secret, we can hook it using any number of standard techniques in order to dump out the master secret. This secret can then be provided to an IDS to decrypt the content of the SSL stream; it may also be provided to a tool like Wireshark to decrypt packet captures after the fact (even if perfect forward secrecy is used).

- really cool solution!
- run the machine under QEMU
- use pre-established "trace points"
- trace memory writes

Other solutions: PANDA keyfind plugin

Place this output into a file named keyfind_config.txt in the panda/qemu directory. Alternatively, the same information can be derived by hand using a tool like Wireshark and copied into keyfind_config.txt , but this is rather more labor intensive.

Locating the Master Key Code

Finally, we can run a replay with the keyfind plugin enabled to find out what code generates the master secret. Because the keyfind plugin tracks the calling function in order to better identify different memory accesses, we also need to enable the callstack_instr plugin, which keeps track of function calls and returns. We'll also use QEMU's VNC output rather than the default SDL because replays don't show any GUI output.

Using keyfind can be quite slow! On my machine, this short session, which takes only 12 seconds to replay with no olugins, takes almost 2 hours to run with keyfing enabled. This is what the output looks like:

brendan@brendantemp:-/git/panda/gemu\$ echo "begin_replay sslut" | \
 x86_4-5oftmu/gemu> system-x86_64 - hod abelan_cqueez_1886_desktop_tut.qcow2 \
 -a 256 -monitor stdio -vnc :0 -net nic,model=e1000 -net user \
 -panda "callstack_instr;keyfind"
 Initializing plugin callstack_instr
 Initializing plugin keyfind
 Couldn't open keyfind_candidates.txt; no key tap candidates defined.

huge overhead

non portable

- Problem 1: exact key location is unknown
 - need to dump all memory
 - dumping memory takes time (>10 seconds for 4 GB)
 - multiple connections occur one after the other or interspersed
 - space quickly fills up

- Problem 1: exact key location is unknown
 - need to dump all memory
 - dumping memory takes time (>10 seconds for 4 GB)
 - multiple connections occur one after the other or interspersed
 - space quickly fills up
- Problem 2: we don't even know how to distinguish the correct keys from random memory.

- Problem 1: exact key location is unknown
 - need to dump all memory
 - dumping memory takes time (>10 seconds for 4 GB)
 - multiple connections occur one after the other or interspersed
 - space quickly fills up
- Problem 2: we don't even know how to distinguish the correct keys from random memory.

To understand our approach we must dig deeper!

How exactly does TLS work? Client Hello

Client hello: version, ciphers, client random	Client		Server
	Client hello: v	ersion, ciphers, client random	

How exactly does TLS work? Server Hello

ent	Serve
Client hello: version, ciphers, client random	
Server hello: certificate, chosen cipher, server random	

How exactly does TLS work? Client Finished

Client		Server
	Client hello: version, ciphers, client random	
•	Server hello: certificate, chosen cipher, server random	
	Client Finished (first encrypted pkt)	

How exactly does TLS work? Server Finished

lient		Serve
Client h	nello: version, ciphers, client random	-
Server	hello: certificate, chosen cipher, server random	
Client F	Finished (first encrypted pkt)	
Server	Finished (first encrypted pkt)	

How exactly does TLS work? Handshake Complete

Client		Server
	Client hello: version, ciphers, client random	•
•	Server hello: certificate, chosen cipher, server random	
	Client Finished (first encrypted pkt)	
•	Server Finished (first encrypted pkt)	
•	Further traffic is now encrypted	

But wait!

Key events in the TLS handshake

Implications

- Only track memory between events
- Events signalled by passing through netfilter queue
- Dramatic decrease in memdump size

Implications

- Only track memory between events
- Events signalled by passing through netfilter queue
- Dramatic decrease in memdump size
- But how do you actually "track" pages?

Think VM live migration

■ *t*₀: start tracking pages written to from *t*₀ and flush the RAM to the target on the network

- t₀: start tracking pages written to from t₀ and flush the RAM to the target on the network
- when this finishes, get the "dirty" pages (at t₁) and send the delta to target again

- *t*₀: start tracking pages written to from *t*₀ and flush the RAM to the target on the network
- when this finishes, get the "dirty" pages (at t₁) and send the delta to target again
- repeat this for every $t_i t_{i+1}$ until number of pages is under threshold

- *t*₀: start tracking pages written to from *t*₀ and flush the RAM to the target on the network
- when this finishes, get the "dirty" pages (at t₁) and send the delta to target again
- repeat this for every $t_i t_{i+1}$ until number of pages is under threshold
- stop VM1, do iteration one last time, start VM2

Similar mechanisms exist in most (all) modern hypervisors that support VM migration

- Page fault based (basic)
- EPT A/D

Similar mechanisms exist in most (all) modern hypervisors that support VM migration

- Page fault based (basic)
- EPT A/D
- Recently, a processor extension especially for this: Intel PML. Convenient, right ???

- Filter target network events and send to netfilter queue
- Start logging on Server Hello
- Stop logging and dump pages on Client Finished
- The result is a micro-memdump
- Can be processed offline anytime

- on Linux VM per connection: 500K 10 MB memdump
- on Windows VM per connection: 15 MB 60 MB memdump
- VM pause time: under 0.5 ms but on average 0.05 ms
- page dump time: 1-10 ms (disguised as packet delay)

- Problem 1: you don't know where the keys are (partially solved)
 - need to dump all memory
 - dumping memory takes time (>10 seconds for 4 GB)
 - multiple connections occur one after the other or interspersed
 - space quickly fills up
- Problem 2: we don't even know how to distinguish the correct keys from random memory.

Apparently multiple unknowns

- key format
- key parameters: IV, nonce, etc
- what to encrypt/decrypt
- what it decrypts to

The Client/Server Finished messages have a fixed form: 14 00 00 0C [12 random bytes]

410	Client	Key	/ E>	kcha	ange	e,	Chai	nge	Cip	her	Spe	ec,	Fi	nis	hed			 	v
3-	0000	14	00	00	0c	7f	a6	87	08	ab	2e	6c	32	fd	ba	f7	c9	 12	

The Client/Server Finished messages have a fixed form: 14 00 00 0C [12 random bytes]

410	Client	Кеу	/ E:	xch	ange	e,	Chai	nge	Cip	her	Spe	ec,	Fi	nis	hed			 	~
3-	0000	14	00	00	0c	7f	a6	87	08	ab	2e	6c	32	fd	ba	f7	c9	 12	• •

- $\frac{1}{2^{32}}$ chance of a False Positive
- This works if you can decrypt the first 4 bytes (think stream ciphers, AES/CTR, etc)

Alexa top 1000 ciphers

- 5% RC4
- 21% AES CBC
- 73% AES GCM

AES CBC

- Decrypting each block depends on having the previous block
- For the first block you need the IV (not explicit for TLS 1.0)
- The known plaintext is exactly in the first block

AES CBC

- Decrypting each block depends on having the previous block
- For the first block you need the IV (not explicit for TLS 1.0)
- The known plaintext is exactly in the first block
- We use the last block for the padding

AES GCM/CTR

AES GCM/CTR Encryption

AES GCM/CTR Authentication

AES GCM bruteforce attempt

- Counter is [8 bytes key material][8 bytes counter]
- The first half is also from the key material
- Implies $O(N^2)$ which we don't like!

AES GCM tag

- Auth Data, the Ciphertexts, Lengths and the Tag Known
- Each key K corresponds to one H
- Reverse the Flow and do one extra decryption
- Known Plaintext Attack on Counter format

- 1 thread, 240 MB completely random data: 6750 ms
- 6 threads, 240 MB completely random data: 557 ms (12x speedup)
- 6 threads + heuristics, 240 MB typical memdump data: 151 ms (44x speedup)

- 1 thread, 240 MB completely random data: 6750 ms
- 6 threads, 240 MB completely random data: 557 ms (12x speedup)
- 6 threads + heuristics, 240 MB typical memdump data: 151 ms (44x speedup)

However, a typical memdump size is usually 5-10 times smaller. So we can usually consume as fast as we can produce!

Demo 1 (manual)

Demo 2 (integrated)

Actually, this can be applied to other protocols that use a similar negotiation technique for the symmetric keys:

- VPN
- SSH
- Tor

Conclusions and more

- Decrypting TLS on current implementations is definitely feasible with a hypervisor-in-the-middle attack
- We developed a fast and efficient PoC
- You might not observe if you are the one "under scrutiny" on a VPS
- * Actually, if you're not in control of the bare metal all bets are off

Questions

?