
Telescope
Peering Into the Depths of TLS Traffic in Real-Time

Caragea Radu

May 26, 2016

1 / 43

About me

- Vulnerability Researcher

PwnThyBytes: CTF team captain

2 / 43

This presentation

Is not about:

Faults in the TLS protocol/implementation

Attacks on the crypto level of TLS

Is about:

An experiment into what can be done from the hypervisor
(powerful adversary; consider cloud providers)

How far you can go and how noticeable it would be to an
end-user

Some unexpected results

3 / 43

This presentation

Is not about:

Faults in the TLS protocol/implementation

Attacks on the crypto level of TLS

Is about:

An experiment into what can be done from the hypervisor
(powerful adversary; consider cloud providers)

How far you can go and how noticeable it would be to an
end-user

Some unexpected results

3 / 43

Project Genesis

Operating a honeypot farm

weak root (!) credentials: do what you will
analyze traffic (unless it’s encrypted)

Malvertising

Automated in-browser crawlers
Scour the net with the hope of getting infected
Need the infection vector (when served through TLS)

4 / 43

Other solutions: SSLKEYLOGFILE

5 / 43

Other solutions: SSLKEYLOGFILE

6 / 43

Other solutions: SSLKEYLOGFILE

7 / 43

Other solutions: SSLKEYLOGFILE

8 / 43

Other solutions: SSLKEYLOGFILE

Implemented in libNSS (firefox) and openSSL (chrome) but
not IE/Edge

The downside: it’s blatantly visible

9 / 43

Other solutions: Custom Root CA

10 / 43

Other solutions: Custom Root CA

11 / 43

Other solutions: Custom Root CA

Typical solution used by AVs/proxies to intercept TLS traffic

Visible by malware by scanning the disk.

Moreover, in ”Analyzing Forged SSL Certificates in the Wild”
Huang et al show how to do this within the browser

12 / 43

Other solutions: PANDA keyfind plugin

really cool solution!
run the machine under QEMU
use pre-established ”trace points”
trace memory writes

13 / 43

Other solutions: PANDA keyfind plugin

huge overhead

non portable

14 / 43

Scavenging the keys from memory?

While connection is still active, the keys must still be in memory.

Problem 1: exact key location is unknown

need to dump all memory
dumping memory takes time (>10 seconds for 4 GB)
multiple connections occur one after the other or interspersed
space quickly fills up

Problem 2: we don’t even know how to distinguish the correct
keys from random memory.

To understand our approach we must dig deeper!

15 / 43

Scavenging the keys from memory?

While connection is still active, the keys must still be in memory.

Problem 1: exact key location is unknown

need to dump all memory
dumping memory takes time (>10 seconds for 4 GB)
multiple connections occur one after the other or interspersed
space quickly fills up

Problem 2: we don’t even know how to distinguish the correct
keys from random memory.

To understand our approach we must dig deeper!

15 / 43

Scavenging the keys from memory?

While connection is still active, the keys must still be in memory.

Problem 1: exact key location is unknown

need to dump all memory
dumping memory takes time (>10 seconds for 4 GB)
multiple connections occur one after the other or interspersed
space quickly fills up

Problem 2: we don’t even know how to distinguish the correct
keys from random memory.

To understand our approach we must dig deeper!

15 / 43

Scavenging the keys from memory?

While connection is still active, the keys must still be in memory.

Problem 1: exact key location is unknown

need to dump all memory
dumping memory takes time (>10 seconds for 4 GB)
multiple connections occur one after the other or interspersed
space quickly fills up

Problem 2: we don’t even know how to distinguish the correct
keys from random memory.

To understand our approach we must dig deeper!

15 / 43

How exactly does TLS work? Client Hello

Client Server

Client hello: version, ciphers, client
 random

Server hello: certificate, chosen
 cipher, server random

Client Finished (first encrypted pkt)

Server Finished (first encrypted pkt)

Further traffic is now encrypted

16 / 43

How exactly does TLS work? Server Hello

Client Server

Client hello: version, ciphers, client
 random

Server hello: certificate, chosen
 cipher, server random

Client Finished (first encrypted pkt)

Server Finished (first encrypted pkt)

Further traffic is now encrypted

17 / 43

How exactly does TLS work? Client Finished

Client Server

Client hello: version, ciphers, client
 random

Server hello: certificate, chosen
 cipher, server random

Client Finished (first encrypted pkt)

Server Finished (first encrypted pkt)

Further traffic is now encrypted

18 / 43

How exactly does TLS work? Server Finished

Client Server

Client hello: version, ciphers, client
 random

Server hello: certificate, chosen
 cipher, server random

Client Finished (first encrypted pkt)

Server Finished (first encrypted pkt)

Further traffic is now encrypted

19 / 43

How exactly does TLS work? Handshake Complete

Client Server

Client hello: version, ciphers, client
 random

Server hello: certificate, chosen
 cipher, server random

Client Finished (first encrypted pkt)

Server Finished (first encrypted pkt)

Further traffic is now encrypted

20 / 43

But wait!

Excerpt from RFC5246/4346:

To generate the key material, compute

key_block = PRF(SecurityParameters.master_secret,

"key expansion",

SecurityParameters.server random +

SecurityParameters.client random);

until enough output has been generated.

Key material = [client_write_MAC_key][server_write_MAC_key]

[client write key][server write key]

[client_write_IV][server_write_IV]

21 / 43

Key events in the TLS handshake

Client Server

Client hello: version, ciphers, client
 random

Server hello: certificate, chosen
 cipher, server random

Client Finished (first encrypted pkt)

Server Finished (first encrypted pkt)

Further traffic is now encrypted

Keys have not been generated

Keys have been generated

22 / 43

Implications

Only track memory between events

Events signalled by passing through netfilter queue

Dramatic decrease in memdump size

But how do you actually ”track” pages?

23 / 43

Implications

Only track memory between events

Events signalled by passing through netfilter queue

Dramatic decrease in memdump size

But how do you actually ”track” pages?

23 / 43

Think VM live migration

Logdirty mechanism

t0: start tracking pages written to from t0 and flush the RAM
to the target on the network

when this finishes, get the ”dirty” pages (at t1) and send the
delta to target again

repeat this for every ti - ti+1 until number of pages is under
threshold

stop VM1, do iteration one last time, start VM2

24 / 43

Think VM live migration

Logdirty mechanism

t0: start tracking pages written to from t0 and flush the RAM
to the target on the network

when this finishes, get the ”dirty” pages (at t1) and send the
delta to target again

repeat this for every ti - ti+1 until number of pages is under
threshold

stop VM1, do iteration one last time, start VM2

24 / 43

Think VM live migration

Logdirty mechanism

t0: start tracking pages written to from t0 and flush the RAM
to the target on the network

when this finishes, get the ”dirty” pages (at t1) and send the
delta to target again

repeat this for every ti - ti+1 until number of pages is under
threshold

stop VM1, do iteration one last time, start VM2

24 / 43

Think VM live migration

Logdirty mechanism

t0: start tracking pages written to from t0 and flush the RAM
to the target on the network

when this finishes, get the ”dirty” pages (at t1) and send the
delta to target again

repeat this for every ti - ti+1 until number of pages is under
threshold

stop VM1, do iteration one last time, start VM2

24 / 43

Think VM live migration

Logdirty mechanism

t0: start tracking pages written to from t0 and flush the RAM
to the target on the network

when this finishes, get the ”dirty” pages (at t1) and send the
delta to target again

repeat this for every ti - ti+1 until number of pages is under
threshold

stop VM1, do iteration one last time, start VM2

24 / 43

Logdirty

Similar mechanisms exist in most (all) modern hypervisors that
support VM migration

Page fault based (basic)

EPT A/D

Recently, a processor extension especially for this: Intel PML.
Convenient, right ???

25 / 43

Logdirty

Similar mechanisms exist in most (all) modern hypervisors that
support VM migration

Page fault based (basic)

EPT A/D

Recently, a processor extension especially for this: Intel PML.
Convenient, right ???

25 / 43

Putting the TeLeScope together

Filter target network events and send to netfilter queue

Start logging on Server Hello

Stop logging and dump pages on Client Finished

The result is a micro-memdump

Can be processed offline anytime

26 / 43

TeLeScope results

on Linux VM per connection: 500K - 10 MB memdump

on Windows VM per connection: 15 MB - 60 MB memdump

VM pause time: under 0.5 ms but on average 0.05 ms

page dump time: 1-10 ms (disguised as packet delay)

27 / 43

Problems revisited

Problem 1: you don’t know where the keys are (partially
solved)

need to dump all memory
dumping memory takes time (>10 seconds for 4 GB)
multiple connections occur one after the other or interspersed
space quickly fills up

Problem 2: we don’t even know how to distinguish the correct
keys from random memory.

28 / 43

Problem 2: key discerning

Apparently multiple unknowns

key format

key parameters: IV, nonce, etc

what to encrypt/decrypt

what it decrypts to

29 / 43

Known Plaintext Attack

The Client/Server Finished messages have a fixed form:

14 00 00 0C [12 random bytes]

1
232

chance of a False Positive

This works if you can decrypt the first 4 bytes (think stream
ciphers, AES/CTR, etc)

30 / 43

Known Plaintext Attack

The Client/Server Finished messages have a fixed form:

14 00 00 0C [12 random bytes]

1
232

chance of a False Positive

This works if you can decrypt the first 4 bytes (think stream
ciphers, AES/CTR, etc)

30 / 43

Alexa top 1000 ciphers

5% RC4

21% AES CBC

73% AES GCM

31 / 43

AES CBC

Decrypting each block depends on having the previous block

For the first block you need the IV (not explicit for TLS 1.0)

The known plaintext is exactly in the first block

We use the last block for the padding

32 / 43

AES CBC

Decrypting each block depends on having the previous block

For the first block you need the IV (not explicit for TLS 1.0)

The known plaintext is exactly in the first block

We use the last block for the padding

32 / 43

AES GCM/CTR

33 / 43

AES GCM/CTR Encryption

34 / 43

AES GCM/CTR Authentication

35 / 43

AES GCM bruteforce attempt

Counter is [8 bytes key material][8 bytes counter]

Here: 0fddf45e89838e700000000000000001

The first half is also from the key material

Implies O(N2) which we don’t like!

36 / 43

AES GCM tag

Auth Data, the Ciphertexts, Lengths and the Tag Known
Each key K corresponds to one H
Reverse the Flow and do one extra decryption
Known Plaintext Attack on Counter format

37 / 43

Telesync benchmarks

1 thread, 240 MB completely random data: 6750 ms

6 threads, 240 MB completely random data: 557 ms (12x
speedup)

6 threads + heuristics, 240 MB typical memdump data: 151
ms (44x speedup)

However, a typical memdump size is usually 5-10 times smaller. So
we can usually consume as fast as we can produce!

38 / 43

Telesync benchmarks

1 thread, 240 MB completely random data: 6750 ms

6 threads, 240 MB completely random data: 557 ms (12x
speedup)

6 threads + heuristics, 240 MB typical memdump data: 151
ms (44x speedup)

However, a typical memdump size is usually 5-10 times smaller. So
we can usually consume as fast as we can produce!

38 / 43

Demo 1 (manual)

39 / 43

Demo 2 (integrated)

40 / 43

Technique genericity

Actually, this can be applied to other protocols that use a similar
negotiation technique for the symmetric keys:

VPN

SSH

Tor

41 / 43

Conclusions and more

Decrypting TLS on current implementations is definitely
feasible with a hypervisor-in-the-middle attack

We developed a fast and efficient PoC

* You might not observe if you are the one ”under scrutiny”
on a VPS

* Actually, if you’re not in control of the bare metal all bets
are off

42 / 43

Questions

?

43 / 43

